DF-G2 High Speed Expert Dual Display Fiber Amplifier with Dual Discrete Outputs and IO Link

Instruction Manual

Contents

1 Product Description 3
1.1 M odels
1.2 Overview 3
1.3 Top Panel Interface 4
2 Installation Instructions 5
2.1 Mounting Instructions 5
2.2 Installing the Fibers 5
2.3 Fiber Adapters 6
2.4 Wiring Diagrams 6
3 Operating Instructions
3.1 Run M ode 7
3.2 Program M ode 7
3.2.1 Output Selection 9
3.2.2 TEACH Selection 9
3.2.3 Response Speeds 10
3.2.4 Offset Percent 10
3.2.5 Auto Thresholds 10
3.2.6 Delays/Timers 11
3.2.7 Sensitivity Selection 11
3.2.8 Display Readout 11
3.2.9 Gain Selection 11
3.2.10 Factory Defaults 11
3.3 Remote Input 11
3.4 Sync M aster/Slave 12
3.5 Adjust M ode 12
3.5.1 TEACH Procedures 12
3.5.2 Troubleshooting 21
4 IO-Link Interface 23
5 Specifications 24
5.1 Excess Gain Curves 24
5.2 Beam Patterns 27
5.3 Dimensions 29
6 Accessories 30
6.1 Quick-Disconnect Cordsets 30
7 Banner Engineering Corp. Limited Warranty 32

1 Product Description

Advanced Sensor with Dual Discrete Outputs and IO-Link Communication for Use with Plastic and Glass Fiber Optic Assemblies

- Response speeds of: $50 \mu \mathrm{~s}, 250 \mu \mathrm{~s}, 500 \mu \mathrm{~s}, 1000 \mu \mathrm{~s}$ and $2000 \mu \mathrm{~s}$ allow for
 optimization for fast responses, long distance applications, or noisy environments
- Outstanding color contrast sensitivity; detects 32 levels of gray scale from black to white
- Visible red and IR beam color models available
- Easy to read dual digital displays show both signal level and threshold simultaneously
- Lever action fiber clamp provides stable, reliable, and trouble-free fiber clamping
- Simple user interface ensures easy sensor set-up and programming through displays and switches/buttons or remote input teach wire
- Expert TEACH and SET methods ensure optimal gain and threshold for all applications, especially for high speed or low contrast applications
- User has full control over all operating parameters: threshold, Light Operate or Dark Operate, output timing functions, gain level, and response speed
- Thermally stable electronics shortens start-up time and maintains signal stability during operation
- ECO (economy) display mode reduces amplifier power consumption by 25%
- Cross talk avoidance algorithm allows two sensors to operate in close proximity for many applications
- Sleek 10 mm wide housing mounts to 35 mm DIN rail

WARNING: Not To Be Used for Personnel Protection
Never use this device as a sensing device for personnel protection. Doing so could lead to serious injury or death. This device does not include the self-checking redundant circuitry necessary to allow its use in personnel safety applications. A sensor failure or malfunction can cause either an energized or de-energized sensor output condition.

1.1 M odels

Model	Sensing Beam Color	Reference Sensing Range ${ }^{1}$	Channel 1	Channel 2	Connector ${ }^{2}$
DF-G2-KD-2M	Visible Red	1100 mm	IO-Link, push/pull output	PNP only output, or input	$2 \mathrm{~m}(6.5 \mathrm{ft})$ cable, 4 -wire
DF-G2IR-KD-2M	Infrared	2100 mm			

1.2 Overview

The DF-G2 is an easy-to-use, DIN-rail-mountable fiber optic sensor with best in class response speed and repeatability. It provides highperformance sensing in high speed or low contrast applications where fast response time is required.
The sensor's compact housing has dual digital displays (Red/Green) and a bright output LED for easy programming and status monitoring during operation. The sensor features a push-pull primary output which supports IO-link communication, and a multifunction secondary independent PNP output which can be configured as an input for advanced sensor configuration and remote teach.
The DF-G2 features improved temperature compensation compared with previous fiber optic sensors. An accessory clamp is available to secure a bank of connected sensors together on a DIN rail (see Accessories).

[^0]Figure 1. DF-G2 IO Link M odel Features

1. Output LED

2. $\mathrm{CH} 1 / \mathrm{CH} 2$ Switch
3. RUN/PRG/ADJ Mode Switch
4. Lever Action Fiber Clamp
5. Red Signal Level
6. Green Threshold
7. +/SET/- Rocker Button

1.3 Top Panel Interface

Opening the dust cover provides access to the top panel interface. The top panel interface consists of the RUN/PRG/ADJ mode switch, CH1/CH2 switch, +/SET/-rocker button, dual red/green digital displays, and output LED.

RUN/PRG/ ADJ Mode Switch

The RUN/PRG/ADJ mode switch puts the sensor in RUN, PRG (Program), or ADJ (Adjust) mode.

- RUN mode allows the sensor to operate normally and prevents unintentional programming changes via the +/SET/- rocker button.
- PRG mode allows the sensor to be programmed through the display-driven programming menu (see Program M ode on page 7).
- ADJ mode allows the user to perform Expert TEACH/SET methods and M anual Adjust (see Adjust M ode on page 12).

CH1/CH2 Switch (Dual Output Mode)

The $\mathrm{CH} 1 / \mathrm{CH} 2$ switch selects which output's parameters can be accessed and changed in the interface of the display.

+/ SET/-Rocker Button

The $+/$ SET/- rocker button is a 3 -way button. The $+/$ - positions are engaged by rocking the button left/right. The SET position is engaged by clicking down the button while the rocker is in the middle position. All three button positions are used during PRG mode to navigate the display-driven programming menu. During ADJ mode, SET is used to perform TEACH/SET methods and $+/$ - are used to manually adjust the threshold(s). The rocker button is disabled during RUN mode, except when using Window SET.

Red/Green Digital Displays

During RUN and ADJ modes, the Red display shows the signal level, and the Green display shows the threshold or the total counts. During PRG mode, both displays are used to navigate the display-driven programming menu.

Dual Output LEDs

The output LEDs provide a visible indication when the associated output is active (conducting).

- 1 represents the Channel 1 output
- 2 represents the Channel 2 output

2 Installation Instructions

2.1 Mounting Instructions

Mount on a DIN Rail

1. Hook the DIN rail clip on the bottom of the DF-G2 over the edge of the DIN rail (1).
2. Push the DF-G2 up on the DIN rail (1).
3. Pivot the DF-G2 onto the DIN rail, pressing until it snaps into place (2).

M ount to the Accessory Bracket (SA-DIN-BRACKET)

1. Position the DF-G2 in the SA-DIN-BRACKET.
2. Insert the supplied M 3 screws.
3. Tighten the screws.

Remove from a DIN rail

1. Push the DF-G2 up on the DIN rail (1).
2. Pivot the DF-G2 away from the DIN rail and remove it (2).

2.2 Installing the Fibers

Follow these steps to install glass or plastic fibers.

1. Open the dust cover.
2. M ove the fiber clamp forward to unlock it.
3. Insert the fiber(s) into the fiber port(s) until they stop.
4. M ove the fiber clamp backward to lock the fiber(s).
5. Close the dust cover.

Note: For optimum performance of IR models, if applicable, glass fibers must be used.

2.3 Fiber Adapters

Note: If a thin fiber with less than 2.2 mm outer diameter is used, install the fiber adapter provided with the fiber assembly to ensure a reliable fit in the fiber holder. Align the fibers to the end of the adaptors. Banner includes the adapters with all fiber assemblies.

Fiber Outer Diameter (mm)	Adapter Color
$\varnothing 1.0$	Black
$\varnothing 1.3$	Red
$\varnothing 2.2$	No adapter needed

When connecting coaxial-type fiber assemblies to the amplifier, install the single-core (center) fiber to the Transmitter port, and the multi-core (outer) fiber to the Receiver port. This will result in the most reliable detection.

2.4 Wiring Diagrams

Figure 2. Channel 1 as a Push-Pull discrete output, Channel 2 as PNP discrete output

Key
1 =Brown
2 =White
3 =Blue
4 =Black

Note: Open lead wires must be connected to a terminal block.

Note: The Channel 2 wire function is user-selectable. The default is independent Light Operate (LO) PNP output. See the Remote Input section for details regarding use as remote input or the Sync M aster/Slave section for use as a synchronization output.

3 Operating Instructions

3.1 Run Mode $\stackrel{\text { Ruv pra nou }}{\square}$

Run mode allows the sensor to operate normally and prevents unintentional programming changes. The $+/$ SET/- rocker button is disabled during RUN mode, except when using Window SET.

3.2 Program Mode ${ }^{\text {RUN Prg adj }}$

Program (PRG) mode allows the following settings to be programmed in the DF-G2.

CH 1 Factory Default Settings:

Setting	Factory Default
Out SEL1	LO
tch SEL1	2-pt tch
rESP SPd	250 us
OFSt Pct1	10 Pct
Auto thr1	oFF
dLY SEL1	oFF
SEnS SEL1	high
diSP rEAd	diSP 1234
GAin SEL	Auto

Figure 4. CH 1 Program M ode Chart

CH 2 Factory Default Settings:

Setting	Factory Default
Out SEL2	LO
tch SEL2	2-pt tch
OFSt Pct2	10 Pct
Auto thr2	oFF
dLY SEL2	oFF
SEnS SEL2	high

Figure 5. CH 2 Program M ode Chart

3.2.1 Output Selection

But 5EL 1

Both CH 1 and CH 2 can be programmed for either light operate (LO) or dark operate (DO). The Channel 2 menu includes additional options: Health (Health M ode Alarm), Comp (Complementary Programming), Set (sets Channel 2 wire as a remote input), M ast (selects this unit as the master and then allows you to enter the total number of slaves there will be), Slve (selects this unit as a slave and then allows you to enter this slave address), LED off, LED on and Gate.

3.2.2 TEACH Selection ECH SEL A

The DF-G2 can be programmed for one of the following TEACH/SET methods:

- Two-Point TEACH
- Dynamic TEACH
- Window SET
- Light SET
- Dark SET
- Calibration SET

[^1]
3.2.3 Response Speeds FEFP 5Pd

Description	Response Speed	Repetition Period	Repeatability	Cross-Talk Avoidance	Energy Efficient Light Resistance	Maximum Range, Red 3	Maximum Range, IR850 ${ }^{4}$
Fast	50 us	12 us	12 us	No	No	500	750
Standard	250 us	50 us	50 us	Yes	No	725	1300
M edium Range	500 us	80 us	80 us	Yes	No	900	1600
Long Range	1000 us	165 us	165 us	Yes	No	1100	2100
Long Range (with Immunity)	2000 us	165 us	165 us	Yes	Yes	1100	2100

3.2.4 Offset Percent [FFSFpr

The Offset Percent is used during the Window, Light, or Dark SET methods. The threshold(s) are positioned a programmable \% offset from the taught condition.
The allowable offset percent range varies based on the response speed, teach method and sensitivity settings as shown below:

Teach Method	Response Speed	Sensitivity	Offset \% Range
Window Set, Light Set	$50 \mu \mathrm{~s}, 250 \mu \mathrm{~s}$	High	2 to 98\%
		Standard	5 to 95\%
		Low	10 to 90\%
	$500 \mu \mathrm{~s}, 1000 \mu \mathrm{~s}, 2000 \mu \mathrm{~s}$	High	1 to 99\%
		Standard	2 to 98\%
		Low	5 to 95\%
Dark Set	$50 \mu \mathrm{~s}, 250 \mu \mathrm{~s}$	High	2 to 999\%
		Standard	5 to 999\%
		Low	10 to 999\%
	$500 \mu \mathrm{~s}, 1000 \mu \mathrm{~s}, 2000 \mu \mathrm{~s}$	High	1 to 999\%
		Standard	2 to 999\%
		Low	5 to 999\%

3.2.5 Auto Thresholds RuEatMr

Auto Thresholds can be programmed to be ON/OFF. The Auto Thresholds algorithm continuously tracks slow changes in the taught condition(s), and optimizes the threshold(s) to provide for reliable sensing. For Two-Point and Dynamic TEACH, the algorithm optimizes the threshold to be centered between the light and dark conditions. For Window, Light, and Dark SET, the algorithm optimizes the threshold(s) to maintain the programmed Offset Percent from the taught condition.

- After programming Auto Thresholds to ON, it is highly recommended to re-perform the TEACH/SET method
- Manual Adjustments are disabled when Auto Thresholds are ON
- Auto Thresholds are automatically disabled in Calibration SET (see Calibration SET on page 20)
- Severe contamination/changes in the taught condition can prevent the Auto Thresholds algorithm from optimizing the threshold(s). If this occurs, the DF-G2 enters a Threshold Alert or Threshold Error state. See Troubleshooting on page 21 for more explanation.

[^2]

ON/OFF Delays and ON/OFF One-Shot timers can be programmed independently for both CH 1 and CH2 for a time period between between 1 9999 ms (a value of 0 disables the delay/timer). Figure 6 on page 11 defines how the delays/ timers affect the output behavior.

Some combinations of delays/timers are not allowed. The DF-G2 programming menu automatically disables invalid combinations of delays/timers. The following table shows the allowable combinations of delays/timers:

Figure 6. DF-G2 Delays/Timers

	OFF Delay	OFF One-Shot Timer	ON Delay	ON One-Shot Timer
OFF Delay	-	OK	OK	N/A
OFF One-Shot Timer	OK	-	N/A	N/A
ON Delay	OK	N/A	-	OK
ON One-Shot Timer	N/A	N/A	OK	-

3.2.7 Sensitivity Selection 5E~5EL I

The Sensitivity Selection can be programmed independently for CH 1 and CH 2 . Use this setting to increase (lo) or decrease (high) the switch-point hysteresis from the default (std) setting.

- high - High sensitivity. Use this setting for low contrast sensing
- Std-Standard sensitivity
- Lo-Low sensitivity. Use this setting to stabilize the output in high vibration applications

3.2.8 Display Readout [5PT-ERd

The readout of the digital displays can be programmed for the following options:

- Signal/Threshold readout - Numeric (1234) or \% (123P)
- ECO mode - Enabled or Disabled (ECO mode dims the displays to reduce current consumption)
- Display Orientation - Normal (1234) or Flipped (七દZL)

3.2.9 Gain Selection 탁 in 5EL

The DF-G2 can operate in Auto Gain mode or the Gain can be fixed to be in Gain 5 in 5 EL I In Auto Gain, the DF-G2 optimizes the gain during a TEACH/ SET method for the presented condition(s). While viewing the fixed gains in the Gain Selection choice list, the DFG2 will automatically switch to the selected gain and display the measured signal on the Red display. This allows for easy and quick evaluation of the fixed gain mode.

3.2.10 Factory Defaults FsE

The Factory Defaults menu allows the DF-G2 to be easily restored back to original factory default settings (see Factory Default Settings in Program M ode).

3.3 Remote Input

Use the input wire to program the sensor remotely. To program the sensor using the input wire, remote input must be enabled (inPT $\mathrm{SEL}=\mathrm{SEt}$). The remote input provides limited programming options (see the figure below). Pulse the remote input according to the figures and the instructions provided in this manual.

Note: For NPN models, the remote input pulses are active low as shown in the following figures. For PNP models, the remote input pulses are active high and are inverted from the following figures.

Figure 7. Single Output - Remote Input Flowchart

3.4 Sync M aster/ Slave

Up to seven DF-G2 High Speed Expert Dual Display Fiber Amplifier with Dual Discrete Outputs and IO Link sensors may be used together in a single sensing application. To eliminate crosstalk between the sensors, configure one sensor to be the master and the remaining sensors to be the slaves. In this mode, the sensors alternate taking measurements and the response speed is 2 ms .

Note: Note: In this mode, all sensors must either be NPN or PNP output models.

1. Configure the first sensor as the M aster (inPt SEL = M AST).
2. In the Master sensor set-up, enter the total number of Slave sensors you will be using (tOtL SLAV =1-6).
3. For each Slave sensor used, configure the input as a Slave (inPt SEL =SLVE).
4. Give each Slave its own identifying address (SLAV Addr $=1-6$).
5. Connect the Input wires of the M aster and all of the Slaves together.

Note: Note: Giving two Slave sensors the same address will cause them to fire their emitters at the same time in the firing sequence.

RUN PRG ADJ
 3.5 Adjust M ode

Sliding the RUN/PRG/ADJ mode switch to the ADJ position allows the user to perform Expert TEACH/SET methods and Manual Adjustment of the threshold(s).

Note: For the Dual Output models, when teaching CH 2 , the gain setting will be the same as the gain setting made during the CH 1 teach. Reteaching CH 1 may invalidate the previous CH 2 teach.

3.5.1 TEACH Procedures

The instruction manual has detailed instructions for these TEACH modes:

- Two-Point TEACH
- Dynamic TEACH
- Window SET
- Light SET
- Dark SET
- Calibration SET

Two-Point TEACH

- Establishes a single switching threshold
- Threshold can be adjusted by using the " + " and "-" rocker button (M anual Adjust)

Two-Point TEACH is used when two conditions can be presented statically to the sensor. The sensor locates a single sensing threshold (the switch point) midway between the two taught conditions, with the Output ON condition on one side, and the Output OFF condition on the other.

Figure 8. Two-Point TEACH (Light Operate shown)
The Output ON and OFF conditions can be reversed by using the LO/DO (Light Operate/ Dark Operate) switch.

Two-Point TEACH and Manual Adjust

M oves switching threshold value up or down to make adjustments

- Slide Mode switch to ADJ to enter Adjust mode
- Press " + " to increase; press "-" to decrease
- GREEN display shows the switching threshold value
- 2 seconds after adjustment, the GREEN display will flash 3 times to confirm
- Slide Mode switch to RUN to complete operation

Remember: M anual adjustments are disabled when Auto Thresholds are ON

Follow these steps to perform a Two-Point TEACH:
Note: TEACH Selection must be programmed to 2Pt tcH.

1. Enter Adjust mode.

Method	Action	Result	
SET Button 5	Set the M ode switch to ADJ.	RUN PRG ADJ	Display: Red - Signal Level; Green - Threshold
Remote Input 6	No action is required; sensor is ready for the Two-Point TEACH method		

2. Teach the first condition.

[^3]3. Teach the second condition.

4. Return to Run mode.

Method	Action	Result
SET Button	Move the M ode switch to RUN	RUN PRG ADJ

Dynamic TEACH

- Teaches on-the-fly
- Establishes a single switching threshold
- Threshold can be adjusted using " + " and "-" rocker button (M anual Adjust)

Dynamic TEACH is best used when a machine or process may not be stopped for teaching. The sensor learns during actual sensing conditions, taking multiple samples of the light and dark conditions and automatically setting the threshold at the optimum level.

Figure 9. Dynamic TEACH (Light Operate shown)
The output ON and OFF conditions can be reversed using the LO/DO switch.

Dynamic TEACH and M anual Adjust

Moves switching threshold value up or down to make adjustments

- Slide Mode switch to ADJ to enter Adjust mode
- Press "+" to increase; press "-" to decrease
- GREEN display shows the switching threshold value
- 2 seconds after adjustment, GREEN display will flash 3 times to confirm
- Slide Mode switch to RUN to complete operation

Remember: M anual adjustments are disabled when Auto Thresholds are ON

Follow these steps to perform Dynamic TEACH:

[^4]$\Longrightarrow \quad$ Note：TEACH Selection must be programmed to $\mathbf{d Y n} \mathbf{t c H}$ ．
1．Enter Adjust Mode．

Method	Action	Result	
SET Button 8	Set M ode switch to ADJ	RUN PRG ADJ	Display：Red－Signal Level；Green－ Threshold
Remote Input 9	No action required；sensor is ready for Dynamic TEACH method		

2．Enter Dynamic TEACH．

| Method | Action | Result | |
| :--- | :--- | :--- | :--- | :--- |
| SET Button | Click the SET rocker button | Display：Flashes＂dYn tch＂then holds on
 ＂1234 dYn＂ | |
| Remote Input | Single－pulse remote input | | |

3．Present ON and OFF Conditions．

Method	Action	Result
SET Button	Present ON and OFF conditions	Display：Red－Signal Level；Green－ Threshold
Remote Input	Present ON and OFF conditions	THan

4．Exit Dynamic TEACH．

Method	Action		Result
SET Button	Click the SET rocker button		TEACH Accepted Displays alternate＂PASS＂with \％M inimum Difference ${ }^{10}$ ，Sensor returns to Adjust mode
Remote Input	Single－pulse remote input	\square^{T}	TEACH Not Accepted Displays alternate＂FAIL＂with \％M inimum Difference ${ }^{10}$ ，Sensor returns to Adjust mode \qquad保 PEL

5．Return to RUN M ode．

Method	Action	Result	
SET Button	Move M ode switch to RUN	RUN PRG ADJ	Display：Red－Signal Level；Green－ Threshold
Remote Input	No action required；sensor returns to RUN mode automatically		

[^5]
Window SET

- Sets window thresholds that extend a programmable \% offset above and below the presented condition
- All other conditions (lighter or darker) cause the output to change state
- Sensing window center can be adjusted using "+" and "-" rocker button (Manual Adjust)
- Recommended for applications where a product may not always appear in the same place, or when other signals may appear
- See Program Mode for programming the Offset Percent setting

A single sensing condition is presented, and the sensor positions window thresholds a programmable \% offset above and below the presented condition. In LO mode, Window SET designates a sensing window with the Output ON condition inside the window, and the Output OFF conditions outside the window.

Figure 10. Window SET (Light Operate shown)
Output ON and OFF conditions can be reversed using the LO/DO switch.
Window SET and Manual Adjust
M oves sensing window center value up or down to make adjustments

- Slide Mode switch to ADJ to enter Adjust mode
- Press " + " to increase; press "-" to decrease
- GREEN display shows the sensing window center value
- 2 seconds after adjustment, the GREEN display will flash 3 times to confirm
- Slide Mode switch to RUN to complete operation

Remember: M anual adjustments are disabled when Auto Thresholds are ON

Follow these steps to perform a Window SET:

\mathbb{C}
 Note: TEACH Selection must be programmed to wind SEt.

1. Enter Adjust Mode

Method	Action	Result
SET Button 11	Set M ode switch to ADJ	RUN PRG ADJ
Remote Input 12	No action required; sensor is ready for Window SET method - Signal Level; Green -	
Threshold		

2. SET Sensing Condition

[^6]
3. Return to RUN M ode

Method	Action	Result
SET Button	Move M ode switch to Run	RUN PRG ADJ
Remote Input	No action required; sensor returns to Run mode automatically	Display: Red - Signal Level; Green - Window Center (see Figure 11 on page 17 for instructions on how to display upper and lower thresholds)

Figure 11. Upper and Lower Thresholds

Light SET

- Sets a threshold a programmable \% offset below the presented condition
- Changes output state on any condition darker than the threshold condition
- Threshold can be adjusted using " + " and "-" rocker button (M anual Adjust)
- Recommended for applications where only one condition is known, for example a stable light background with varying darker targets
- See Program Mode for programming the Offset Percent setting

A single sensing condition is presented, and the sensor positions a threshold a programmable \% offset below the presented condition. When a condition darker than the threshold is sensed, the output either turns ON or OFF, depending on the LO/DO setting.

[^7]

Figure 12. Light SET (Light Operate shown)

Light SET and M anual Adjust

M oves switching threshold value up or down to make adjustments

- Slide Mode switch to ADJ to enter Adjust mode
- Press " + " to increase; press "-" to decrease
- GREEN display shows the switching threshold value
- 2 seconds after adjustment, the GREEN display will flash 3 times to confirm
- Slide Mode switch to RUN to complete operation

Remember: M anual adjustments are disabled when Auto Thresholds are ON

Follow these steps to perform a Light SET:
\square
Note: TEACH Selection must be programmed to Lt SEt.

1. Enter Adjust Mode

| Method | Action | Result |
| :--- | :--- | :--- | :--- |
| SET Button 14 | Set M ode switch to ADJ | RUN PRG ADJ |
| Remote Input 15 | No action is required; sensor is ready for
 Light SET method | Display: Red - Signal Level; Green -
 Threshold |

2. SET Sensing Condition

3. Return to RUN M ode

14 SET Button: 0.04 seconds \leq "Click" ≤ 0.8 seconds
15 Remote Input: 0.04 seconds $\leq \mathrm{T} \leq 0.8$ seconds
16 See Troubleshooting on page 21 for more explanation of the \% Offset displayed after the Light SET method

Method	Action	Result
SET Button	Move M ode switch to RUN	RUN PRG ADJ
Remote Input	No action required; sensor returns to RUN mode automatically	Display: Red - Signal Level; Green - Threshold

Dark SET

- Sets a threshold a programmable \% offset above the presented condition
- Any condition lighter than the threshold condition causes the output to change state
- Threshold can be adjusted using "+" and "-" rocker button (M anual Adjust)
- Recommended for applications where only one condition is known, for example a stable dark background with varying lighter targets
- See Program Mode for programming the Offset Percent setting
- Note: Offset Percent M UST be programmed to Minimum Offset to accept conditions of no signal (0 counts).

A single sensing condition is presented, and the sensor positions a threshold a programmable \% offset above the presented condition. When a condition lighter than the threshold is sensed, the output either turns ON or OFF, depending on the LO/DO setting.

Figure 13. Dark SET (Light Operate shown)

Dark SET and M anual Adjust

M oves switching threshold value up or down to make adjustments

- Slide Mode switch to ADJ to enter Adjust mode
- Press "+" to increase; press "-" to decrease
- GREEN display shows the switching threshold value
- 2 seconds after adjustment, the GREEN display will flash 3 times to confirm
- Slide Mode switch to RUN to complete operation

Remember: M anual adjustments are disabled when Auto Thresholds are ON

Follow these steps to perform a Dark SET:

Note: TEACH Selection must be programmed to dr SEt.

1. Enter Adjust Mode.

Method	Action	Result
SET Button 17	Set M ode switch to ADJ	RUN PRG ADJ
Remote Input 18	No action required; sensor is ready for Dark SET method	Display: Red - Signal Level; Green - Threshold

17 SET Button: 0.04 seconds \leq "Click" ≤ 0.8 seconds
18 Remote Input: 0.04 seconds $\leq \mathrm{T} \leq 0.8$ seconds
2. SET Sensing Condition.

3. Return to RUN Mode.

Method	Action	Result
SET Button	Move M ode switch to RUN	RUN PRG ADJ
Remote Input	No action required; sensor returns to RUN mode automatically	Threshold - Signal Level; Green -

Calibration SET

- Sets a threshold exactly at the presented condition
- Threshold can be adjusted using " + " and "-" rocker button (M anual Adjust)

A single sensing condition is presented, and the sensor positions a threshold exactly at the presented condition. When a condition lighter than the threshold is sensed, the output either turns ON or OFF, depending on the LO/DO setting.

Figure 14. Calibration SET (Light Operate shown)
Calibration SET and M anual Adjust
Moves switching threshold value up or down to make adjustments

- Slide Mode switch to ADJ to enter Adjust mode
- Press " + " to increase; press "-" to decrease
- GREEN display shows the switching threshold value
- 2 seconds after adjustment, the GREEN display will flash 3 times to confirm
- Slide Mode switch to RUN to complete operation

Remember: Auto Thresholding is automatically disabled in Calibration SET

Follow these steps to perform a Calibration SET:

[^8]
$\pi{ }^{-}$
 Note: TEACH Selection must be programmed to CAL SEt.

1. Enter Adjust Mode

Method	Action	Result
SET Button 20	$\bullet \quad$ Set M ode switch to ADJ	RUN PRG ADJ
Remote Input 21	No action required; sensor is ready for Calibration SET method	Display: Red - Signal Level; Green - Threshold

2. SET Sensing Condition

Method	Action	Result
SET Button	- Present sensing condition - Click the SET rocker button	Threshold Condition Accepted Displays read "cAL SEt" then flashes "PASS"; Sensor returns to Adjust mode
Remote Input	- Present sensing condition T	ERL EEL PREE
	- Present sensing condition - Single-pulse the remote input	Threshold Condition Unacceptable Displays read "cAL SEt" then flashes "FAIL"; Sensor returns to Adjust mode
		FRL EELFR iL

3. Return to RUN Mode

Method	Action	Result	
SET Button	Move M ode switch to RUN	RUN PRG ADJ	Display: Red - Signal Level; Green - Threshold
Remote Input	No action required; sensor returns to RUN mode automatically	\square	

3.5.2 Troubleshooting

Manual Adjustments Disabled

M anual adjustments are disabled when Auto Thresholds are ON. If a manual adjustment is attempted while Auto Thresholds are ON, the Green display will flash Ruta.

Percent Minimum Difference after TEACH

The Two-Point and Dynamic TEACH methods will flash a \% minimum difference on the displays after a PASS or FAIL.

Value	PASS/ FAIL	Description
0 to 99%	FAIL	The difference of the taught conditions does not meet the required minimum
100 to 300%	PASS	The difference of the taught conditions just meets/ exceeds the required minimum, minor sensing variables may affect sensing reliability
300 to 600%	PASS	The difference of the taught conditions sufficiently exceeds the required minimum, minor sensing variables will not affect sensing reliability
$600 \%+$	PASS	The difference of the taught conditions greatly exceeds the required minimum, very stable operation

[^9]
Percent Offset after SET

The Window, Dark, and Light SET methods will flash a \% offset on the displays after a PASS or FAIL.

SET Result	\% Offset M eaning
PASS (with \% Offset)	Displays the \% offset used for the SET method
FAIL (with \% Offset)	Displays the minimum required \% offset necessary to PASS the SET method
FAIL (without \% Offset)	Presented condition cannot be used for the SET method

Threshold Alert or Threshold Error

Severe contamination/changes in the taught condition can prevent the Auto Thresholds algorithm from optimizing the threshold(s).

State	Display	Description	Corrective Action
Threshold Alert	Alternates thr RLit and 	The threshold(s) cannot be optimized, but the sensor's output will still continue to function	Cleaning/correcting the sensing environment and/or a re-teach of the sensor is highly recommended
Threshold Error	Ehr Err	The threshold(s) cannot be optimized, and the sensor's output will stop functioning	Cleaning/correcting the sensing environment and/or a re-teach of the sensor is required

4 IO-Link Interface

IO-Link is a point-to-point communication link between a master device and sensor. It can be used to automatically parameterize sensors and transmit process data. For the latest IO-Link protocol and specifications, please visit the web site at http://www.io-link.com.
The IO-Link IODD package is contained on the Banner IO-Link Device Description Resource CD (P/N 18491). For the latest IODD files, please refer to the Banner Website at http://www.bannerengineering.com/IO-Link.

5 Specifications

Sensing Beam

DF-G2: Visible red, 635 nm
DF-G2IR: Infrared, 850 nm

Supply Voltage

10 V to 30 V dc Class 2 (10% maximum ripple)
Power and Current Consumption (exclusive of load)
Standard display mode: 960 mW , Current consumption $<40 \mathrm{~mA}$ at 24 V dc ECO display mode: 720 mW , Current consumption $<30 \mathrm{~mA}$ at 24 V dc

Supply Protection Circuitry

Protected against reverse polarity and transient overvoltages

Delay at Power-Up

500 milliseconds maximum; outputs do not conduct during this time
Output Configuration
CH1 = IO-Link, Push/pull
$\mathrm{CH} 2=$ PNP only output or input

Output Rating

100 mA maximum load each output (derate 1 mA per ${ }^{\circ} \mathrm{C}$ above $30^{\circ} \mathrm{C}$)
100 mA max total load current for sensor
OFF-state leakage current: <5 A A PNP at 30 V dc (N.A. push/pull);
ON-state saturation voltage: <2 V
Required Overcurrent Protection
WARNING: Electrical connections must be made by
qualified personnel in accordance with local and national
electrical codes and regulations.

Overcurrent protection is required to be provided by end product application per the supplied table.
Overcurrent protection may be provided with external fusing or via Current Limiting, Class 2 Power Supply.
Supply wiring leads < 24 AWG shall not be spliced.
For additional product support, go to http://www.bannerengineering.com.

Supply Wiring (AWG)	Required Overcurrent Protection (Amps)
20	5.0
22	3.0
24	2.0
26	1.0
28	0.8
30	0.5

10-Link Interface

Supports smart sensor profile: Yes
Baud rate: 38400 bps
Process data widths: 16 bits
IODD files: Provides all programming options of the display, plus additional functionality

Output Protection

Protected against output short-circuit, continuous overload, transient overvoltages, and false pulse on power-up
Construction
Black ABS/ polycarbonate alloy (UL94 V-0 rated) housing, clear polycarbonate cover

Connections

PVC jacketed 2 m (6.5 ft) 4-wire integral cable; or integral 4-pin M 8/Picostyle quick disconnect; or 150 mm (6 inch) cable with a 4 -pin M 12/Euro-style quick disconnect; or 150 mm (6 inch) cable with a 4-pin M $8 /$ Pico-style quick disconnect

Adjustments

3-way RUN/PRG/ADJ M ode Switch
2-way CH1/CH2 Switch
3-way H/SET/- Rocker Button

- Expert-style teaching (Two-Point and Dynamic TEACH, Light/Dark/ Window/Calibration SET)
- Manually adjust sensitivity (from "+" and "-" rocker button only)
- Response Speed, TEACH Selection, Offset Percent, Auto Thresholds, Delays/Timers, Display Readout, Gain Selection, Factory Defaults (from top panel or remote input)
- Top panel interface lockout (from remote input only)

Indicators

Red 4-digit Display: Signal Level
Green 4-digit Display: Threshold
(In Program M ode, Red and Green displays are used for programming
menus)
Amber LED: Output conducting
Environmental Rating
IEC IP50, NEM A 1
Operating Conditions
Temperature: $-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(+14{ }^{\circ} \mathrm{F}\right.$ to $\left.+131{ }^{\circ} \mathrm{F}\right)$
Storage Temperature: $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.+185^{\circ} \mathrm{F}\right)$
Humidity: 90% at $+60^{\circ} \mathrm{C}$ maximum relative humidity (non-condensing)
Certifications

Response Speed

Description	Response Speed	Repetition Period	Repeatability	Cross-Talk Avoidance	Energy Efficient Light Resistance	Maximum Range, Red ${ }^{22}$	Maximum Range, IR850 ${ }^{23}$
Fast	50 us	12 us	12 us	No	No	500	750
Standard	250 us	50 us	50 us	Yes	No	725	1300
M edium Range	500 us	80 us	80 us	Yes	No	900	1600
Long Range	1000 us	165 us	165 us	Yes	No	1100	2100
Long Range (with Immunity)	2000 us	165 us	165 us	Yes	Yes	1100	2100

5.1 Excess Gain Curves

The excess gain curves shown are for the standard red LED and IR850 LED emitter models.
The data in the charts that is labeled for the Long Range application apply to both the $1000 \mu \mathrm{~s}$ and $2000 \mu \mathrm{~s}$ response speeds.

[^10]Table 1: 0.25 mm (0.01 in) Diameter Fibers

Table 2: 0.51 mm (0.02 in) Diameter Fibers

Opposed Mode	Diffused Mode
 Figure 17. PIT26U	 Figure 18. PBT26U

Table 3: 1.02 mm (0.04 in) Diameter Fibers

Table 4: 1.52 mm (0.06 in) Diameter Fibers

Table 5: IT.83.3ST5M 6 glass fiber used for opposed mode; BTC1.13.4.T5M 6 glass fiber used for diffuse mode

5.2 Beam Patterns

The beam patterns shown are for the standard red LED and IR850 LED emitter models.
The data in the charts that is labeled for the Long Range application apply to both the $1000 \mu \mathrm{~s}$ and $2000 \mu \mathrm{~s}$ response speeds.
Table 6: 0.25 mm (0.01 in) Diameter Fibers

Opposed Mode								Diffuse Mode						
 Figure 25. PIT16U										Figure 26. PBT16U				

Table 7: 0.51 mm (0.02 in) Diameter Fibers

Table 8: 1.02 mm (0.04 in) Diameter Fibers

Opposed Mode	Diffuse Mode
 Figure 29. PIT46U	 Figure 30. PBT46U

Table 9: 1.52 mm (0.06 in) Diameter Fibers

Table 10: IT.83.3ST5M 6 glass fiber used for opposed mode; BTC1.13.4.T5M 6 glass fiber used for diffuse mode

5.3 Dimensions

6 Accessories

DIN-35-..
35 mm DIN Rail

Model	Length
DIN-35-70	70
DIN-35-105	105
DIN-35-140	140

Hole center spacing: 35.1
Hole size: 25.4×5.3

SA-DIN-CLAMP

- Pair of metal DIN rail end stops; slide onto DIN rail at either side of the sensor stack
- Combination (\#2 Phillips, \#8 standard slotted) set screw

SA-DIN-BRACKET-10

- Package of 10 plastic brackets with mounting
screws

Hole center spacing: $A=16, B=25.4, C=15.2$
Hole size: $A=\varnothing 3.2, B=\varnothing 3.3, C=\varnothing 4.4$

6.1 Quick-Disconnect Cordsets

All measurements are listed in millimeters, unless noted otherwise.

4-Pin Threaded M12/ Euro-Style Cordsets				
Model	Length	Style	Dimensions	Pinout (Female)
MQDC-406	1.83 m (6 ft)	Straight		
MQDC-415	4.57 m (15 ft)			
MQDC-430	9.14 m (30 ft)			
MQDC-450	15.2 m (50 ft)			
MQDC-406RA	1.83 m (6 ft)	Right-Angle		
MQDC-415RA	4.57 m (15 ft)			
MQDC-430RA	9.14 m (30 ft)			$\begin{aligned} & 1=\text { Brown } \\ & 2=\text { White } \end{aligned}$
MQDC-450RA	15.2 m (50 ft)			$\begin{aligned} & 3=\text { Blue } \\ & 4=\text { Black } \end{aligned}$

4-Pin Snap-on M8/ Pico-Style Cordsets				
Model	Length	Style	Dimensions	Pinout (Female)
PKG4-2	2 m (6.6 ft)	Straight		
PKG4-5	5 m (16.4 ft)			
PKG4-10	10 m (32.8 ft)			
PKW4Z-2	2 m (6.6 ft)		p.	
PKW4Z-5	5 m (16.4 ft)	Right-Angle		$\begin{gathered} 1=\text { Brown } \\ 2=\text { White } \\ 3=\text { Blue } \\ 4=\text { Black } \end{gathered}$

7 Banner Engineering Corp. Limited Warranty

Banner Engineering Corp. warrants its products to be free from defects in material and workmanship for one year following the date of shipment. Banner Engineering Corp. will repair or replace, free of charge, any product of its manufacture which, at the time it is returned to the factory, is found to have been defective during the warranty period. This warranty does not cover damage or liability for misuse, abuse, or the improper application or installation of the Banner product.
THIS LIMITED WARRANTY IS EXCLUSIVE AND IN LIEU OF ALL OTHER W ARRANTIES WHETHER EXPRESS OR IM PLIED (INCLUDING, WITHOUT LIMITATION, ANY WARRANTY OF M ERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE), AND WHETHER ARISING UNDER COURSE OF PERFORMANCE, COURSE OF DEALING OR TRADE USAGE.
This Warranty is exclusive and limited to repair or, at the discretion of Banner Engineering Corp., replacement. IN NO EVENT SHALL BANNER ENGINEERING CORP. BE LIABLE TO BUYER OR ANY OTHER PERSON OR ENTITY FOR ANY EXTRA COSTS, EXPENSES, LOSSES, LOSS OF PROFITS, OR ANY INCIDENTAL, CONSEQUENTIAL OR SPECIAL DAM AGES RESULTING FROM ANY PRODUCT DEFECT OR FROM THE USE OR INABILITY TO USE THE PRODUCT, WHETHER ARISING IN CONTRACT OR WARRANTY, STATUTE, TORT, STRICT LIABILITY, NEGLIGENCE, OR OTHERWISE.
Banner Engineering Corp. reserves the right to change, modify or improve the design of the product without assuming any obligations or liabilities relating to any product previously
manufactured by Banner Engineering Corp. Any misuse, abuse, or improper application or installation of this product or use of the product for personal protection applications when the product is identified as not intended for such purposes will void the product warranty. Any modifications to this product without prior express approval by Banner Engineering Corp will void the product warranties. All specifications published in this document are subject to change; Banner reserves the right to modify product specifications or update documentation at any time. For
the most recent version of any documentation, refer to: www.bannerengineering.com.

[^0]: 1 Excess gain =1, Long Range response speed, opposed mode sensing. PIT46U plastic fiber used for visible LED models, IT. 83.3 ST5M 6 glass fiber used for IR model 2 Connector options:

 - A model with a QD connector requires a mating cordset
 - For 150 mm (6 in) PVC, M 8 Pico QD connector, 4-pin change the suffix 2M to Q3 in the 2 m model number (example, DF-G2-KD-Q3)
 - For $150 \mathrm{~mm}(6 \mathrm{in})$ PVC, M 12 Euro QD connector, 4-pin change the suffix 2 M to Q 5 in the 2 m model number (example, DF-G2-KD-Q5)
 - For integral M 8 Pico QD connector, 4-pin change the suffix 2 M to Q 7 in the 2 m model number (example, DF-G2-KD-Q7)

[^1]: \longrightarrow
 Note: A TEACH Selection must be selected by programming before TEACH/SET methods can be used.

[^2]: 3 Excess Gain =1 at High Sensitivity setting; opposed mode sensing using PIT46U plastic fiber
 4 Excess Gain =1 at High Sensitivity setting; opposed mode sensing using IT. 83.3 ST5M 6 glass fiber

[^3]: 5 SET Button: 0.04 seconds \leq "Click" ≤ 0.8 seconds
 6 Remote Input: 0.04 seconds $\leq T \leq 0.8$ seconds

[^4]: 7 See Troubleshooting on page 21 for more explanation of the \% M inimum Difference displayed after the Two-Point TEACH method.

[^5]: 8 SET Button： 0.04 seconds \leq＂Click＂≤ 0.8 seconds
 9 Remote Input： 0.04 seconds $\leq T \leq 0.8$ seconds
 10 See Troubleshooting on page 21 for more explanation of the \％M inimum Difference displayed after the Dynamic TEACH method．

[^6]: 11 SET Button: 0.04 seconds \leq "Click" ≤ 0.8 seconds
 12 Remote Input: 0.04 seconds $\leq T \leq 0.8$ seconds

[^7]: 13 See Troubleshooting on page 21 for more explanation of the \% Offset displayed after the Window SET method

[^8]: 19 See Troubleshooting on page 21 for more explanation of the \% Offset displayed after the Dark SET method

[^9]: 20 SET Button: 0.04 seconds \leq "Click" ≤ 0.8 seconds
 21 Remote Input: 0.04 seconds $\leq T \leq 0.8$ seconds

[^10]: 22 Excess Gain = 1 at High Sensitivity setting; opposed mode sensing using PIT46U plastic fiber
 23 Excess Gain =1 at High Sensitivity setting; opposed mode sensing using IT.83.3ST5M 6 glass fiber

