Mapping Multiple 12 I/O Nodes to a 12 I/O Gateway

Mapping Multiple 12 I/O Nodes to a 12 I/O Gateway

Follow these basic steps to map the inputs of four 12 I/O Nodes to the outputs of a 12 I/O Gateway.

Required equipment includes:

- Four 12 I/O Performance P7 (for NPN) or P8 (for PNP) Nodes
- One 12 I/O Performance P7 (for NPN) or P8 (for PNP) Gateway
- Windows-based PC running the User Configuration Tool (UCT) downloaded from the Banner website

- 1. Connect your Gateway to the Windows-based PC running the UCT software.
- 2. Click GET Gateway to load the Gateway's configuration settings into the UCT.
- 3. Configure the Nodes (see *Configure the 12 I/O Nodes for Bit Packing* on page 1).
- 4. Map the Node's inputs to the Gateway's outputs (see Map the Node's Inputs to the Gateway's Outputs on page 2).
- 5. Configure the Gateway (see *Configure the 12 I/O Gateway for Bit Packing* on page 2).

To add even more inputs or outputs to the Gateway, connect and configure the 12 I/O DX85 Remote I/O Modbus Slave device. This network configuration may also be connected to a host system that would access data using Modbus commands.

Configure the 12 I/O Nodes for Bit Packing

The 12 I/O devices ship from the factory with six inputs and six outputs all stored within individual registers. Using the hardware DIP switches allows for different pre-set combinations of inputs and outputs in different Modbus register configurations. This tech note shows an example of a custom combination of inputs and outputs. Use the User Configuration tool for custom configurations.

Click GET Node for each Node to be configured. For this example, we are using Node 1 through Node 4.

Typically, inputs 1 through 6 are stored in registers 1 through 6 and outputs 9 through 14 are stored in registers 9 through 14. When bitpacking discrete data, all inputs are stored in register 1 and all outputs are stored in register 9. Refer to the device's datasheet for a detailed explanation about using these 12 I/O models.

Use the threshold parameter to define the information bit-packed into registers. Each bit of the threshold parameter defines an input or output. For example, set bit 0 to select input or output 1, set bit 1 to select input or output 2, et cetera.

1. For Node 1: Write 0000 0000 1111 = 0x000F = 15 to Node 1's I/O 1 threshold parameter to configure Node 1 to bit-pack inputs 1 through 4 into I/O 1 (register 1). These inputs will later be mapped to the Gateway's I/O 9 (register 9) using the UCT.

								Bits								
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Input #					12	11	10	9	8	7	6	5	4	3	2	1
Parameter Data					0	0	0	0	0	0	0	0	1	1	1	1

The first four inputs of Node 1 will be bit-packed into the Node's I/O 1 (register 1).

2. Verify all other inputs and outputs on Node 1 are disabled.

3. For Node 2: Write 0000 0111 0000 = 0x0070 = 112 to Node 2's I/O 1 threshold parameter to configure Node 2 to bit-pack inputs 5 through 7 into I/O 1 (register 1). These inputs will later be mapped to the Gateway's I/O 10 (register 10) using the UCT.

								Bits								
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Input #					12	11	10	9	8	7	6	5	4	3	2	1
Parameter Data					0	0	0	0	0	1	1	1	0	0	0	0

4. Verify all other inputs and outputs on Node 2 are disabled.

5. For Node 3: Write 0001 1000 0000 = 0x0180 = 384 to Node 3's I/O 1 threshold parameter to configure Node 3 to bit-pack inputs 8 and 9 into I/O 1 (register 1). These inputs will later be mapped to the Gateway's I/O 11 (register 11) using the UCT.

								Bits								
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Input #					12	11	10	9	8	7	6	5	4	3	2	1
Parameter Data					0	0	0	1	1	0	0	0	0	0	0	0

6. Verify all other inputs and outputs on Node 3 are disabled.

 For Node 4: Write 1110 0000 0000 = 0x0E00 = 3584 to Node 4's I/O 1 threshold parameter to configure Node 4 to bit-pack inputs 10 through 12 into I/O 1 (register 1). These inputs will later be mapped to the Gateway's I/O 12 (register 12) using the UCT.

								Bits								
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Input #					12	11	10	9	8	7	6	5	4	3	2	1
Parameter Data					1	1	1	0	0	0	0	0	0	0	0	0

8. Verify all other inputs and outputs on Node 4 are disabled.

Map the Node's Inputs to the Gateway's Outputs

Follow these steps to map the Nodes' inputs to the Gateway's outputs.

Source	Input #	Mapped To	Gateway Output #	Modbus Register
Node 1	Register 1 (bit-packed inputs 1-4)	\rightarrow	Register 9 (bit-packed outputs 1-4)	9
Node 2	Register 1 (bit-packed inputs 5-7)	\rightarrow	Register 10 (bit-packed outputs 5-7)	10
Node 3	Register 1 (bit-packed inputs 8-9)	\rightarrow	Register 11 (bit-packed outputs 8-9)	11
Node 4	Register 1 (bit-packed inputs 10–12)	\rightarrow	Register 12 (bit-packed outputs 10-12)	12

- 1. On the Linking > Linking Configuration screen, click the arrow next to Node 1 to view its linking options.
- 2. Next to Input 1 (enabled), select the Gateway from the drop-down list.
- 3. Select the Gateway's I/O 9 from the drop-down list.
- 4. Click Enabled and select the output type from the down-load list (if it isn't already selected).
- 5. Select Packed.
- 6. Repeat these steps for Nodes 2 through 4, mapping as shown.
- 7. Click Send all I/O Links.

The linking data for all Nodes is uploaded to the wireless network.

Configure the 12 I/O Gateway for Bit Packing

Follow these steps to configure the Gateway to receive the four Nodes' bit-packed inputs.

- 1. On the Gateway: Configure the Gateway to use all 12 I/O as outputs by setting DIP switches 5 and 6 to ON and switches 7 and 8 to OFF.
- 2. On the UCT: Go to the **Configuration** > Device **Configuration** screen and verify the Gateway's inputs 1 through 6 and outputs 13 and 14 are disabled.

3. Write to each Gateway output's Threshold parameter the same Threshold parameter number as was written for that particular Node.

Gateway Output	Threshold Parameter Value	Corresponding Node's Input
9	15	Node 1
10	112	Node 2
11	384	Node 3
12	3584	Node 4

4. Click Send I/O Points.

The parameter data for the Gateway's I/O points is uploaded to the wireless network.

