EZ-LI GHT K50 Modbus Series Pick-to-Light Sensors

 more sensors, more solutions
Datasheet

Compact, single-point devices for error-proofing of bin-picking operations

- Rugged, cost-effective, and easy-to-install solutions for error-proofing and parts-verification applications
- Illuminated dome provides easy-to-see job light status
- Choose either polarized retroreflective, fixed-field, touch, or push button models
- Fully encapsulated IP67 construction
- Modbus RTU communication minimizes the cabling requirements

Models	Sensing Mode	Range	Colors	Connection
K50FF25GRYS1Q	Fixed field, infrared, 880 nm	25 mm cutoff	Green, Red, Yellow	Integral 4-pin M12/Euro-style male quick disconnect (QD)
K50FF25GRYS1QP				150 mm (6 in) pigtail PVC cable with a 4-pin M12/Euro-style male quick disconnect (QD)
K50FF50GRYS1Q				Integral 4-pin M12/Euro-style male quick disconnect (QD)
K50FF50GRYS1QP		cutoff		150 mm (6 in) pigtail PVC cable with a 4-pin M12/Euro-style male quick disconnect (QD)
K50FF100GRYS1Q				Integral 4-pin M12/Euro-style male quick disconnect (QD)
K50FF100GRYS1QP		cutoff		150 mm (6 in) pigtail PVC cable with a 4-pin M12/Euro-style male quick disconnect (QD)
K50LPGRYS1Q	larized			Integral 4-pin M12/Euro-style male quick disconnect (QD)
K50LPGRYS1QP	Retroreflective, visible red, 680 nm	2 m (6 ft)		150 mm (6 in) pigtail PVC cable with a 4-pin M12/Euro-style male quick disconnect (QD)
K50TGRYS1Q	Capacitive Touch	N/A		Integral 4-pin M12/Euro-style male quick disconnect (QD)
K50TGRYS1QP				150 mm (6 in) pigtail PVC cable with a 4-pin M12/Euro-style male quick disconnect (QD)
K50PBGRYS1Q	Push Button			Integral 4-pin M12/Euro-style male quick disconnect (QD)
K50PBGRYS1QP				150 mm (6 in) pigtail PVC cable with a 4-pin M12/Euro-style male quick disconnect (QD)

Wiring

4-pin M12/ Euro-style Quick Disconnect Fitting (Male)	Pins	Wire Color	Sensor Connection
	1	Brown	Power IN (+), 12 to 30 V dc
	2	White	RS-485 +
	3	Blue	Ground (-)
	4	Black	RS-485 (-)

- For cables, use Turck's BL ident ${ }^{\circledR}$ cables or their equivalent. For example:
- RK 4.5T-2-RS 4.5T/S2501 2 meter double-ended male/female
- RK 4.5T-1-RS 4.5T/S2501 1 meter double-ended male/female
- RK 4.5T-2/S2501 single ended 2 meter female
- For tees, use Turck RSC 2RKC 57
- For terminators, use Banner model EZL-RTM-M or EZL-RTM-F

Typical Installation


```
A Single-ended cable
B Tee
C Double-ended cable
D Terminator. Contains a 120 Ohm termination resistor connected across pins 2 and 4. Use the terminator for long cables or long
    lines of cascaded units to prevent signal reflections from occurring on the communication lines.
```

	Pin	Wire Color
	1	Brown
	2	White
	3	Blue
	4	Black
	5	Bare (Shield). Connect the shield to ground at the power supply connection.

Modbus RTU Registers

The EZ-LIGHT uses the holding registers table for providing read/write access to configuration data. The holding registers are defined in the 40000-49999 address range.

The input registers table is used for providing read-only access to system status data. The input registers are defined in the 30000-39999 address range. EZ-Light employs a direct addressing scheme. For example, the input register at address 30000 is accessed by reading address 30000 (0×7530) directly; the starting address is not an offset.

Supported Modbus RTU Functions

Functions	Output Status
03	Reading holding registers
04	Read input registers
06	Write single registers
08	See Diagnostics, Function $8(0 \times 08)$ on page 5 for supported commands.
$16(0 \times 10)$	Write multiple registers
$23(0 \times 17)$	Read/write multiple registers

Holding Registers

Address	Description	Holding Register Representation
40001	Modbus slave address	1 (default) through 247
2	www.bannerengineering.com - Tel: $+1-763-544-3164$	P/N 183981 Rev. F

Address	Description	Holding Register Representation
40002	Baud	$\begin{aligned} & 0=9.6 \mathrm{k} \\ & 1=19.2 \mathrm{k}(\text { default }) \\ & 2=38.4 \mathrm{k} \end{aligned}$
40003	Parity	$\begin{aligned} & 0=\text { even }(\text { default }) \\ & 1=\text { odd } \\ & 2=\text { none } \end{aligned}$
40004	Stop bits	$\begin{aligned} & 1=1 \text { stop bit (default) } \\ & 2=2 \text { stop bits } \end{aligned}$
40005	Configuration Select	$0=$ No selectable configuration 1 = Function F2 configuration $2=$ Function C3 configuration $3=$ Function E5 configuration
40006	Modbus Settings Policy	$0=$ Apply After Power Cycle (default) 1 = Apply After Write Exception: Writing 'Configuration Select' takes effect immediately. The maximum time to program a new configuration is two seconds.
40100	J ob 1 Input Register	$\begin{aligned} & 0=\text { Job Inactive (power on value) } \\ & 1=\text { Job Active } \end{aligned}$
40101 *	J ob 2 Input Register	$\begin{aligned} & 0=\text { Job Inactive (power on value) } \\ & 1=\text { Job Active } \end{aligned}$
40102 *	J ob 3 Input Register	$\begin{aligned} & 0=\text { Job Inactive (power on value) } \\ & 1=\text { Job Active } \end{aligned}$

* Not in all configurations.

Function F2 Configuration

Three job lights, independent output; lights are independent of output. Color 2 overrides color 1, and color 3 overrides colors 1 and 2.

J ob input 1	Job input 2	J ob I nput 3	FF 'Hand/ Pick Configuration \#182186	LP 'Block' Configuration \#183942	Touch/ Push Button Configuration \#188525	Sensor Output	Sensor Color
Not active	Not active	Not active	Not detected	Unblocked	No touch or push button inactive	Not active	Light off
Active	Not active	Not active	Not detected	Unblocked		Not active	Job 1 light on
Active	Not active	Not active	Detected	Blocked	Touch or push button active	Active	Job 1 light on
Not active	Active	Not active	Not detected	Unblocked	No touch or push button inactive	Not active	Job 2 light on
Not active	Active	Not active	Detected	Blocked	Touch or push button active	Active	Job 2 light on
Not active	Not active	Active	Not detected	Unblocked	No touch or push button inactive	Not active	Job 3 light on
Not active	Not active	Active	Detected	Blocked	Touch or push button active	Active	Job 3 light on
Active	Active	Not active	Not detected	Unblocked	No touch or push button inactive	Not active	Job 2 light on
Active	Active	Not active	Detected	Blocked	Touch or push button active	Active	Job 2 light on
Active	Not active	Active	Not detected	Unblocked	No touch or push button inactive	Not active	Job 3 light on
Active	Not active	Active	Detected	Blocked	Touch or push button active	Active	Job 3 light on
Not active	Active	Active	Not detected	Unblocked	No touch or push button inactive	Not active	Job 3 light on
Not active	Active	Active	Detected	Blocked	Touch or push button active	Active	Job 3 light on
Active	Active	Active	Not detected	Unblocked	No touch or push button inactive	Not active	Job 3 light on
Active	Active	Active	Detected	Blocked	Touch or push button active	Active	Job 3 light on

Function C3

Three colors used for Job, Mis-pick, and Acknowledge lights. The Acknowledge light overrides the Job light and incorporates a 500 ms leading-edge output/indicator light OFF delay. Time-out is initiated at the onset of the signal. If the target is present for longer than 500 ms and then removed, the output/indicator immediately turns off. The output and indicator lights' (Mis-pick and Acknowledge) time-outs track together.

J ob input	FF 'Hand/ Pick' Configuration \#183940	LP 'Block' Configuration \#183943	Touch/ Push Button Configuration \#188523	Sensor Output	Sensor Color
Not active	Not detected	Unblocked	No touch or push button inactive	Not active	Light off
Not active	Detected	Blocked	Touch or push button active	Active	Red Mis-pick light on
Active	Not detected	Unblocked	No touch or push button inactive	Not active	Green Job light on
Active	Detected	Blocked	Touch or push button active	Active	Yellow Acknowledge light on

Function E5

Three colors: two Job lights and one Sense light. Both Job lights override the Sense light; and Job light 1 overrides Job light 2.

J ob input $\mathbf{1}$	J ob input $\mathbf{2}$	FF 'Hand/ Pick' Configuration \#184292	LP 'Block' Configuration \#184293	Touch/ Push Button Configuration \#188524	Sensor Output	Sensor Color
Not active	Not active	Not detected	Unblocked	No touch or push button inactive	Not active	Light off
Not active	Not active	Detected	Blocked	Touch or push button active	Active	Yellow Sense light on
Active	Not active	Not detected	Unblocked	No touch or push button inactive	Not active	Green Job 1 light on
Active	Not active	Detected	Blocked	Touch or push button active	Active	Green Job 1 light on
Not active	Active	Not detected	Unblocked	No touch or push button inactive	Active	Red Job 2 light on
Not active	Active	Detected	Blocked	Touch or push button active	Active	Red Job 2 light on
Active	Active	Not detected	Unblocked	No touch or push button inactive	Not active	Red Job 2 light on
Active	Active	Detected	Blocked	Touch or push button active	Active	Red Job 2 light on

Input Registers

Address	Description	I nput Register Representation
30001	Sensor output status	$0=$ Not Sensed, $1=$ Sensed
The following information registers (31000-31022) must be read as a block; they cannot be read as single registers.		
31000	Low word firmware part number	Example: 0x0002A734 (hex) = 173876 (dec)
31001	High word firmware part number	High word $=0 \times 0002$, Low word $=0 \times 4734$
31002	Firmware version	Bits 7-4 = Major Version Bits 3-0 $=$ Minor Version. Example: 0×0012 is version 1.2
31003	Build number	0-0xFFFF (hex) $=0-65535$ (dec)
31004	Low word model number	Example: 0x00016D43 (hex) = 93507 (dec)
31005	High word model number	High word $=0 \times 0001$, Low word $=0 \times 6 \mathrm{D} 43$
31006	Model version	Bits 7-4 = Major Version Bits 3-0 $=$ Minor Version. Example: 0×0012 is version 1.2

Address	Description	Input Register Representation
31007	Low word configuration number	Example: $0 \times 0002 \mathrm{C} 7 \mathrm{AA}(\mathrm{hex})=182186$ (dec) High word $=0 \times 0002$, Low word $=0 \times C 7 A A$ (hex)
31008	High word configuration number	
31009	Configuration version	Bits 7-4=Major Version, Bits 3-0=Minor Version. Example: 0×0012 is version 1.2
31013-31013	Date code, 8 bytes	
31014	Low Word Flash Config 1 Part Number	Example: 0x0002C7AA (hex) $=182186$ (dec) High word $=0 \times 0002$, Low word: $0 \times C 7 A A$ 0xFFFFFFFF (hex) = No flash configuration
31015	High Word Flash Config 1 Part Number	
31016	Flash Config 1 Version	Bits 7-4 = Major Version Bits 3-0 $=$ Minor Version $0 \times 00 F F=$ No flash version
31017	Low Word Flash Config 2 Part Number	Example: 0x0002CE84 (hex) $=183940$ (dec) High word $=0 \times 0002$, Low word $=0 \times$ CE84 0xFFFFFFFF (hex) $=$ No flash configuration
31018	High Word Flash Config 2 Part Number	
31019	Flash Config 2 Version	Bits 7-4 = Major Version Bits 3-0 $=$ Minor Version $0 \times 00 F F=$ No flash version
31020	Low Word Flash Config 3 Part Number	Example: 0x0002CFE4 (hex) $=184292$ (dec) High word $=0 \times 0002$, Low word $=0 \times$ CFE4 0xFFFFFFFF (hex) $=$ No flash configuration
31021	High Word Flash Config 3 Part Number	
31022	Flash Config 3 Version	Bits 7-4 = Major Version Bits 3-0 $=$ Minor Version $0 \times 00 F F=$ No flash version
32000	Bus Message Count	Returns same value as Diagnostic Function sub-function 11 (0x0B)
32001	Bus Communication Error Count	Returns same value as Diagnostic Function sub-function 12 (0x0C)
32002	Bus Exception Error Count	Returns same value as Diagnostic Function sub-function 13 (0x0D)
32003	Server Message Count	Returns same value as Diagnostic Function sub-function 14 (0x0E)
32004	Server NAK Count	Returns same value as Diagnostic Function sub-function 16 (0x10)
32005	Bus Character Overrun Count	Returns same value as Diagnostic Function sub-function 18 (0x12)
32006	Buffer Overrun Count	Returns the number of times a buffer overrun has occurred.

Diagnostics, Function 8 (0x08)

Subfunction	Description	
0	Return Query Data	Not supported
1	Restart Communications Option	Returns value of 0, any other value is an internal error condition
2	Return Diagnostic Register	
$10(0 \times 0 \mathrm{~A})$	Clear Counters and Diagnostic Register	
$11(0 \times 0 B)$	Return Bus Message Count	
$12(0 \times 0 \mathrm{C})$	Return Bus Communication Error Count	
$13(0 \times 0 \mathrm{D})$	Return Bus Exception Error Count	
$14(0 \times 0 \mathrm{E})$	Return Server Message Count	
$15(0 \times 0 F)$	Return Server No Response Count	

Subfunction	Description	
$16(0 \times 10)$	Return Server NAK Count	Not supported
$17(0 \times 11)$	Return Server Busy Count	
$18(0 \times 12)$	Return Bus Character Overrun Count	
$20(0 \times 14)$	Clear Overrun Counter and Flag	

Example Commands and Responses

For these examples, the slave address is 1.

Write Color 1 Active

Master	01109CA4000102000122BD	
Response	01109CA400016E7A	

Write Color 1 I nactive

Master	01109CA40001020000E37D	
Response	01109CA400016E7A	

Read Device Status Registers

Master	0104753100023A08	Command to read both output and sensor status registers
Possible Responses	01040400000000 FB84	Output Inactive, button not pressed
	010404000100016B84	Output Active, button pressed
	01040400010000AA44	Output Active, button not pressed

Write Configuration Registers

Master	01109 C 410003060001000100001 BC 3	Write three registers: Slave address 1,19200 baud, Even parity
Response	01109 C 410003 FE4C	

Read Configuration Registers

Master	01039C4100037B8F	Command to read all three configuration registers
Response	0103060001000100004 D75	Response with slave address 1, 19200 baud, even parity

Read I nformation Registers

Master	010479180017295F	Command to read all info registers
Response	01042EA7340002001000026D4300010010CFE4000200106AF319E27D1240E4C7AA00020010CE8400020010CFE4 $00020010 C 652$	

Specifications

Supply Voltage and Current

12 to 30 V dc
Fixed field and polarized retroreflective models: 100 mA at 12 V dc
110 mA at 30 V dc
Touch and push button models: 100 mA at 12 V dc; 65 mA at 30 V dc

Supply Protection Circuitry

Protected against reverse polarity and transient voltages
Light I ntensity

Color	Wavelength (nm)	Typical Intensity (Lumen)		
		K50FF/ LP	K50PB	K50T
Green	525	17	38	39
Red	625	6	13	16
Yellow	590	4	10	13

Environmental Rating

IEC IP67

Operating Conditions
$-40^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.+122^{\circ} \mathrm{F}\right)$
90% at $+50^{\circ} \mathrm{C}$ maximum relative humidity (non-condensing)
Storage: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.+158^{\circ} \mathrm{F}\right)$

Communication

Interface: RS-485 Serial
Baud Rates: 9.6k, 19.2k (default), or 38.4 k
Data format: 8 data bits, no parity (default), 1 stop bit (even or odd
parity available)
Protocol: Modbus RTU

Construction

Housing: polycarbonate
Translucent dome: polycarbonate
Mounting Nut: PBT
Connections
Integral 4-pin M12/Euro-style male quick disconnect (QD); or 150 mm
(6 in) pigtail PVC cable with a 4-pin M12/Euro-style male quick
disconnect (QD)

Vibration and Mechanical Shock

All models meet Mil Std. 202F requirements. Method 201A (vibration:
10 Hz to 60 Hz max., double amplitude 0.06 inch, maximum
acceleration 10G). Also meets IEC 947-5-2 requirements: 30 G 11 ms duration, half sine wave.

Certifications

Dimensions

Fixed Field, Polarized Retroreflective, and Push Button Models

Capacitance Touch Button Models

All measurements are listed in millimeters (inches), unless noted otherwise.

Banner Engineering Corp. Limited Warranty

Banner Engineering Corp. warrants its products to be free from defects in material and workmanship for one year following the date of shipment. Banner Engineering Corp. will repair or replace, free of charge, any product of its manufacture which, at the time it is returned to the factory, is found to have been defective during the warranty period. This warranty does not cover damage or liability for misuse, abuse, or the improper application or installation of the Banner product

THIS LIMITED WARRANTY IS EXCLUSIVE AND IN LIEU OF ALL OTHER WARRANTIES WHETHER EXPRESS OR IMPLIED (INCLUDING, WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABI LITY OR FITNESS FOR A PARTI CULAR PURPOSE), AND WHETHER ARISING UNDER COURSE OF PERFORMANCE, COURSE OF DEALI NG OR TRADE USAGE.

This Warranty is exclusive and limited to repair or, at the discretion of Banner Engineering Corp., replacement. IN NO EVENT SHALL BANNER ENGI NEERI NG CORP. BE
LI ABLE TO BUYER OR ANY OTHER PERSON OR ENTITY FOR ANY EXTRA COSTS, EXPENSES, LOSSES, LOSS OF PROFITS, OR ANY INCIDENTAL,
CONSEQUENTI AL OR SPECI AL DAMAGES RESULTI NG FROM ANY PRODUCT DEFECT OR FROM THE USE OR I NABI LITY TO USE THE PRODUCT, WHETHER ARISING IN CONTRACT OR WARRANTY, STATUTE, TORT, STRICT LIABILITY, NEGLI GENCE, OR OTHERWISE.

Banner Engineering Corp. reserves the right to change, modify or improve the design of the product without assuming any obligations or liabilities relating to any product previously manufactured by Banner Engineering Corp.

Copyright Notice

Any misuse, abuse, or improper application or installation of this product or use of the product for personal protection applications when the product is identified as not intended for such purposes will void the product warranty. Any modifications to this product without prior express approval by Banner Engineering Corp will void the product warranties. All specifications published in this document are subject to change; Banner reserves the right to modify product specifications or update documentation at any time. For the most recent version of any documentation, refer to: www.bannerengineering.com. © Banner Engineering Corp. All rights reserved.

