Datasheet

The Sure Cross ${ }^{\circledR}$ wireless system is a radio frequency network with integrated I/O that operates in most environments to eliminate the need for wiring runs. Wireless networks are formed around a Gateway, which acts as the wireless network master device, and one or more Nodes.

- Wireless industrial I/O device with up to 12 sinking discrete inputs or outputs. Default configuration is set to 6 inputs and 6 outputs (without bit-packing).
- Selectable transmit power levels of 250 mW or 1 Watt for 900 M Hz models and 65 mW for 2.4 GHz models
- FlexPower ${ }^{\circledR}$ power options allow for 10 to 30 V dc, solar, and battery power sources for low power applications.
- DIP switches for user configuration
- Frequency Hopping Spread Spectrum (FHSS) technology and Time Division Multiple Access (TDMA) control architecture ensure reliable data delivery within the unlicensed Industrial, Scientific, and M edical (ISM) band
- Transceivers provide bidirectional communication between the Gateway and Node, including fully acknow ledged data transmission
- Lost RF links are detected and relevant outputs set to user-defined conditions

For additional information, updated documentation, and a list of accessories, refer to Banner Engineering's website, www.bannerengineering.com/wireless.

WARNING: Not To Be Used for Personnel Protection

Never use this device as a sensing device for personnel protection. Doing so could lead to serious injury or death. This device does not include the self-checking redundant circuitry necessary to allow its use in personnel safety applications. A sensor failure or malfunction can cause either an energized or de-energized sensor output condition.

CAUTION: Never Operate 1 Watt Radios Without Antennas

To avoid damaging the radio circuitry, never power up Sure Cross ${ }^{\circledR}$ Performance or Sure Cross MultiHop (1 Watt) radios without an antenna.

CAUTION: Electrostatic Discharge (ESD)

ESD Sensitive Device. This product uses semiconductors that can be damaged by electrostatic discharge (ESD). When performing maintenance, care must be taken so the device is not damaged. Disconnect power from the device when accessing the internal DIP switches. Proper handling procedures include wearing anti-static wrist straps. Damage from inappropriate handling is not covered by warranty.

Models

Model	Frequency	I/O
DX80N9X2S-P7	900 M Hz ISM Band	Discrete I/O: Up to 12 NPN inputs or up to 12 NM OS outputs (for a total of 12 I/O) (Default configuration is 6 IN and 6 OUT, without bit-packing)
DX80N2X2S-P7	2.4 GHz ISM Band	

DX80...C (IP20; NEM A 1) models are also available. To order this model with an IP20 housing, add a C to the end of the model number: DX80N9X2S-P7C.

Configuration Instructions

Setting Up Your Wireless Network

To set up and install your wireless network, follow these steps.
Disconnect the power from your Sure Cross devices.

1. Configure the DIP switches of all devices.
2. If your device has I/O, connect the sensors to the Sure Cross devices. If your device does not have I/O, skip this step.
3. Refer to the wiring diagrams to apply power to all devices.

- For two LED models, the Gateway's LED 1 is solid green and the Node's LED 2 flashes red to indicate there is no radio link to the Gateway.
- For one LED models, the Gateway's LED is solid green and the Node's LED flashes red to indicate there is no radio link to the Gateway.

4. Form the wireless network by binding the Nodes to the Gateway. If the binding instructions are not included in the datasheet, refer to the product manual for binding instructions.
5. Observe the LED behavior to verify the devices are communicating with each other.

- For two LED models, the Gateway's LED 1 is solid green and the Node's LED 1 flashes green to indicate it is communicating with the Gateway.
- For one LED models, the Gateway's LED is solid green and the Node's LED flashes green to indicate it is communicating with the Gateway.

6. Configure any I/O points to use the sensors connected to the Sure Cross devices.
7. Conduct a site survey between the Gateway and Nodes. If the site survey instructions are not included in this datasheet, refer to the product manual for detailed site survey instructions.
8. Install your wireless sensor network components. If installation instructions are not included in this datasheet, refer to the product manual for detailed installation instructions.
For additional information, including installation and setup, weatherproofing, device menu maps, troubleshooting, and a list of accessories, refer to one of the following product manuals.

- Sure Cross ${ }^{\circledR}$ Quick Start Guide: 128185
- Sure Cross ${ }^{\circledR}$ Wireless I/O Network Instruction M anual: 132607
- Web Configurator Instruction M anual (used with "Pro" and DX83 models): 134421
- Host Controller Systems Instruction Manual: 132114

Configure the DIP Switches

Before changing DIP switch positions, disconnect the power. DIP switch changes are not recognized until after power is cycled to the device.
For parameters not set via DIP switches, use the User Configuration Tool (UCT) to make configuration changes. For parameters set using the DIP switches, the DIP switch positions override any changes made using the User Configuration Tool.

Accessing the Internal DIP Switches

To access the internal DIP switches, follow these steps:

1. Unscrew the four screws that mount the cover to the bottom housing.
2. Remove the cover from the housing without damaging the ribbon cable or the pins the cable plugs into.
3. Gently unplug the ribbon cable from the board mounted into the bottom housing.
4. Remove the black cover plate from the bottom of the device's cover.

The DIP switches are located behind the rotary dials.
After making the necessary changes to the DIP switches, place the black cover plate back into position and gently push into place. Plug the ribbon cable in after verifying that the blocked hole lines up with the missing pin. M ount the cover back onto the housing.

DIP Switch Settings

* Default configuration

Device Settings	DIP Switches	
	$\mathbf{1}$	$\mathbf{2}$
Transmit power level: 1 Watt (30 dBm)	OFF*	
Transmit power level: $250 \mathrm{~mW}(24 \mathrm{dBm}), ~ D X 80 ~ c o m p a t i b i l i t y ~$ mode	ON	
Modbus or UCT configured (overrides switches 5-8)		OFF*
DIP switch configured (Uses 5-8 for I/O configuration)		ON

When DIP switch 2 is in its default position (OFF), the I / O is set to 6 discrete inputs and 6 discrete outputs, non-bit-packed. DIP switches 5 through 8 are ignored.
For this 6 IN/ 6 OUT non bit-packed configuration, the discrete INs use I/O points 1 through 6 and the discrete OUTs use I/O points 9 through 14.

Device Settings	DIP Switches			
	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
12 inputs, 0 outputs	OFF*	OFF*	OFF*	OFF*
11 inputs, 1 output	OFF	OFF	OFF	ON
10 inputs, 2 outputs	OFF	OFF	ON	OFF
9 inputs, 3 outputs	OFF	OFF	ON	ON
8 inputs, 4 outputs	OFF	ON	OFF	OFF
7 inputs, 5 outputs	OFF	ON	OFF	ON
6 inputs, 6 outputs	OFF	ON	ON	OFF
5 inputs, 7 outputs	OFF	ON	ON	ON
4 inputs, 8 outputs	ON	OFF	OFF	OFF
3 inputs, 9 outputs	ON	OFF	OFF	ON
2 inputs, 10 outputs	ON	OFF	ON	OFF
1 input, 11 outputs	ON	OFF	ON	ON
0 inputs, 12 outputs	ON	ON	OFF	OFF
6 inputs, 6 outputs (non bit-packed)	ON	ON	OFF	ON
8 bit-packed inputs, 4 non bit-packed outputs	ON	ON	ON	OFF
4 non bit-packed inputs, 8 bit-packed outputs	ON	ON	ON	ON

For DIP switches 5 through 8 to be recognized, DIP switch 2 must be in the ON position.
For the 8 bit-packed IN/4 non bit-packed OUT configuration, all discrete INs use I/O point 1 and the discrete OUTs use I/O points 9 through 12.
For the 4 non bit-packed IN/ 8 bit-packed output configuration, the discrete INs use I/O points 1 through 4 and all bit-packed outputs use I/O point 9.

Modbus/ UCT Configured or DIP Switch Configured for I/ O Configuration

In the OFF position, this device is configured for six discrete inputs and six discrete outputs (non-bit packed) for products built after May 2011. For products built before May 2011, this default position configures the device for 12 inputs and zero outputs (bit packed). In the OFF position, users can send commands directly from the host system to the devices to select custom I/O configuration. Users may also use the User Configuration Tool (UCT) to write custom configuration
In the ON position, use DIP switches 5 through 8 to select one of the pre-programmed discrete I/ 0 configurations shown in the DIP Switch Settings table.

Transmit Power Levels

The 900 MHz radios transmit at $1 \mathrm{Watt}(30 \mathrm{dBm})$ or $250 \mathrm{~mW}(24 \mathrm{dBm})$. While the Performance radios operate in 1 Watt mode, they cannot communicate with the older 150 mW radios. To communicate with 150 mW radios, operate this radio in 250 mW mode. For 2.4 GHz models, this DIP switch is disabled. The transmit power for 2.4 GHz is fixed at about 65 mW EIRP (18 dBm), making the 2.4 GHz Performance models automatically compatible with older 2.4 GHz models.

Using Performance and Non-Performance Radios in the Same Network

To comply with federal regulations, the 150 mW radios and 1 Watt radios communicate differently. To mix Performance radios with non-Performance radios:

- Operate Performance radios in 250 mW mode to communicate with non-Performance radios (DIP switch 1 ON)
- Set non-Performance radios to use Extended Address M ode to communicate with Performance radios (DIP switch 1 ON)

For more detailed instructions about setting up your wireless network, refer to the Quick Start Guide (p/n 128185). For more information about using Performance and non-Performance radios within the same network, refer the technical note titled Mixing Performance Radios and 150 mW Radios in the Same Network listed on the Wireless Support - FAQs section of Banner's Wireless website.

Wiring Your Sure Cross ${ }^{\circledR}$ Device

Use the following wiring diagrams to first wire the sensors and then apply power to the Sure Cross devices.

5-Pin M12/ Euro-style M ale Quick Disconnect

Integral 5-pin M 12/Euro-style male quick disconnect (QD) wiring depends on the model and power requirements of the device. Not all models can be powered by 10 to 30 V dc and not all models can be powered by 3.6 to 5.5 V dc. Refer to Specifications to verify the power requirements of your device. For FlexPower devices, do not apply more than 5.5 V to the gray wire.

5-pin M 12/Euro-style (male)	Pin	Wire Color	Powered by $\mathbf{1 0}$ to $\mathbf{3 0} \mathbf{V}$ dc	Powered by Battery or Battery Pack
	1	Brown	10 to 30 V dc	
	2	White		
	3	Blue	dc common (GND)	dc common (GND)
	4	Black		
	5	Gray		3.6 to 5.5 V dc

DX80...C Wiring

Wiring power to the DX80...C models varies depending the power requirements of the model. Connecting dc power to the communication pins ($\mathrm{Tx} / \mathrm{Rx}$) causes permanent damage. For FlexPower devices, do not apply more than 5.5 V to the $\mathrm{B}+$ terminal.

Terminal Label	Gateway and DX85	$\mathbf{1 0}$ to $\mathbf{3 0} \mathbf{V ~ d c ~ P o w e r e d ~ N o d e s ~}$	Battery Powered Nodes
$\mathrm{V}+$	10 to 30 V dc	10 to 30 V dc	
TX/+	RS485 / D1 / B / +		
V-	dc common (GND)	dc common (GND)	dc common (GND)
RX/-	RS485 / D0 / A / -		
B+			3.6 to 5.5 V dc

Terminal Blocks and Wiring ($\mathbf{1 2}$ Sinking I/ O M odels)

Refer to the Class I Division 2/Zone 2 control drawings ($\mathrm{p} / \mathrm{n} 143086$) for wiring specifications or limitations.

B+. 3.6 to 5.5 V dc (use for battery powered models only)
IOx. Input or output (depending on configuration)
GND. Ground/dc common connection
PWR. 10 to 30 V dc power connection

RX/-. Serial communication line for the Gateway. No connection for Nodes (Gateway and DX85 models) TX/+. Serial communication line for the Gateway; no connection for Nodes (Gateway and DX85 models)
$\mathrm{V}+10$ to 30 V dc power connection
V -. Ground/dc common connection

For the default configuration of 6 IN and 6 OUT, use IO1 through IO6 to wire the inputs and IO7 through IO12 to wire the outputs.
When using the DIP switches to configure the input and output selection, wire the inputs beginning with IO1. After all inputs are wired, begin using the remaining IOx as outputs. For example, if you are using 10 inputs and 2 outputs, use terminals IO1 through IO10 for the inputs and terminals IO11 and IO12 for the outputs.

Discrete Input Wiring for NPN Sensors

Discrete Output Wiring (NPN or NMOS)

The DIx and DOx of these wiring diagrams correspond to the IOx on the terminal block.

LED Behavior for the Nodes

Nodes do not sample inputs until they are communicating with the Gateway. The radios and antennas must be a minimum distance apart to function properly. Recommended minimum distances are:
2.4 GHz 65 mW radios: 1 foot

900 M Hz 150 mW and 250 mW radios: 6 feet
900 M Hz 1 Watt radios: 15 feet

LED 1	LED 2	Node Status
Flashing green		Radio Link Ok
Flashing red	Flashing red	Device Error
	Flashing red, 1 per 3 sec	No Radio Link

User Defined Configuration of Discrete I/ 0 on the 12 I/ O Devices

The $12 \mathrm{I} / \mathrm{O}$ device can be configured into any combination of 12 discrete inputs or outputs. Inputs are stored in a bit packed form in I/O point 1, device register 1 . Outputs are stored in a bit packed form in I/O point 9, device register 9.
Defining Inputs and Outputs- To define which of the 12 I/O points are inputs, adjust the bit field stored as I/O 1's threshold parameter [15:0]. Set bit 0 of the 16 -bit parameter data word to define I/O 1 as an input, set bit 1 to define I/O 2 as an input, et cetera. Each bit position of the parameter is associated to a I/O point. In the example below, the first five I/O points are defined as inputs.

Input Parameter	Bit $\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{0 9}$	$\mathbf{0 8}$	$\mathbf{0 7}$	$\mathbf{0 6}$	$\mathbf{0 5}$	$\mathbf{0 4}$	$\mathbf{0 3}$	$\mathbf{0 2}$	$\mathbf{0 1}$
Input Point \#					12	$\mathbf{0 0}$									
Parameter Data					0	$\mathbf{1 0}$	9	8	7	6	5	4	3	2	1

Define outputs the same way by adjusting the bit field stored in I/O 9's threshold parameter [15:0]. Verify the bit pattern for outputs does not overlap the input pattern. In the example below, I/O points 6-12 are set as outputs.

Input Parameter	Bit 15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Input Point \#					12	11	10	9	8	7	6	5	4	3	2	1
Parameter Data					1	1	1	1	1	1	1	0	0	0	0	0

For inputs, the first I / O point selected as an input is placed in bit position 0 in register 1 . The second input point is in bit position 1 , et cetera. Likewise, for outputs, the first I/O point selected as an output is placed in bit position 0 in register 9 , the second input point is in bit position 2. The bit-packed values are stored in right-justified format.

Input Parameter	Bit 15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Input Point \#					0	0	0	0	0	0	0	IN 5	IN 4	IN 3	IN 2	IN 1
Parameter Data					0	0	0	0	0	OUT 7	OUT 6	OUT 5	OUT 4	OUT 3	OUT 2	OUT 1

Defining Inputs and Outputs Using the UCT

To configure either a Gateway or Node, select the Gateway or specific Node from the drop-down list. To configure a DX85 Remote I/O model, set the DX85's Slave ID to 01 and select the Gateway from the drop-down list.

To define which of the 12 I/ 0 points are inputs for the selected device, adjust the threshold parameter for I/ 0 point 1 . Set bit 0 of the 16 -bit parameter data word to define I/O 1 as an input, set bit 1 to define I/O 2 as an input, et cetera. Each bit position of the parameter is associated to a I/O point. In the example below, the first five I/O points are defined as inputs (0000 $00011111=0 \times 001 \mathrm{~F}=0031$).

To define which of the 12 I/ 0 points are outputs for the selected device, adjust the threshold parameter for I/O point 9 . In the example below, bits 11 through 5 are used to set seven outputs ($111111100000=0 \times 0 \mathrm{FE} 0=4064$)

Sure Cross ${ }^{\circledR}$ User Configuration Tool

The User Configuration Tool (UCT) offers an easy way to link I/ O points in your wireless network, view I/O register values, and set system communication parameters when a host system is not part of the wireless network. The software runs on any computer with the Windows Vista, Windows 7, Windows 8, or Windows 10 operating system.

Use a USB to RS-485 adapter cable to connect a standalone DX80 Gateway to the computer. For DXM Controllers with an internal DX80 radio, connect a computer to the DXM Controller using a USB or Ethernet connection. Download the most recent revisions of the UCT software from Banner Engineering's website: www.bannerengineering.com/wireless.
The USB to RS-485 adapter cable is not required for the DXM Controller. For standalone DX80 Gateway devices use:

- USB to RS-485 adapter cable model BWA-UCT-900 for 1 Watt radios
- USB to RS-485 adapter cable model BWA-HW-006 for all other radios

Installing Your Sure Cross ${ }^{\circledR}$ Radios

Please refer to one of the following instruction manuals for details about successfully installing your wireless network components.

- DX80 and Performance Wireless I/O Network Instruction M anual: 132607

Holding Registers

M odbus Registers		EIP Registers		I/O Type		Holding Register Representation (Dec.)	
Gateway/ DX85	Node	Node		Bit-Packed	Non Bit-Packed (default configuration)	Min.	Max.
1	$1+($ Node\# $\times 16$)	0 +(Node\# $\times 8$)	Instance 100 / N7	Bit-Packed Discrete IN (IO1-IO12)	Discrete IN 1 (IO1)	0	4095

M odbus Registers		EIP Registers		I/O Type		Holding Register Representation (Dec.)	
Gateway / DX85	Node	Node		Bit-Packed	Non Bit-Packed (default configuration)	Min.	Max.
2	$2+($ Node\# $\times 16$)	$1+($ Node\# $\times 8$)			Discrete IN 2 (IO2)	0	1
3	3 +(Node\# $\times 16$)	$2+($ Node\# $\times 8$)			Discrete IN 3 (IO3)	0	1
4	4 +(Node\# $\times 16$)	3 +(Node\# $\times 8$)			Discrete IN 4 (IO4)	0	1
5	5 +(Node\# $\times 16$)	4 +(Node\# $\times 8$)			Discrete IN 5 (IO5)	0	1
6	6 +(Node\# $\times 16$)	5 +(Node\# ×8)			Discrete IN 6 (IO6)	0	1
7	7 +(Node\# $\times 16$)	6 +(Node\# >8)		Reserved			
8	8 +(Node\# $\times 16$)	7 +(Node\# $\times 8$)		Device M essage			
9	$9+($ Node\# $\times 16)$	0 +(Node\# $\times 8$)	Instance 112 / N14	Bit-Packed Discrete OUT (IO1-IO12)	Discrete OUT 1 (IO7)	0	4095
10	10 +(Node\# $\times 16$)	1 +(Node\# $\times 8$)			Discrete OUT 2 (IO8)	0	1
11	$11+($ Node\# $\times 16$)	$2+($ Node\# $\times 8$)			Discrete OUT 3 (IO9)	0	1
12	$12+($ Node\# $\times 16$)	3 +(Node\# $\times 8$)			Discrete OUT 4 (IO10)	0	1
13	13 +(Node\# $\times 16$)	4 +(Node\# $\times 8$)			Discrete OUT 5 (IO11)	0	1
14	14 +(Node\# $\times 16$)	5 +(Node\# $\times 8$)			Discrete OUT 6 (IO12)	0	1
15	15 +(Node\# $\times 16$)	6 +(Node\# $\times 8$)		Control M essage			
16	$16+($ Node\# $\times 16$)	7 +(Node\# $\times 8$)		Reserved			

For other non bit-packed configurations, the inputs begin at I/O point 1 and the outputs begin after the last input.
For DIP switches 5 through 8 to be recognized, DIP switch 2 must be in the ON position.
For the 4 non bit-packed IN/8 bit-packed output configuration, the discrete INs use I/O points 1 through 4 and all bit-packed outputs use I/O point 9.

Specifications

Radio Range ${ }^{1}$

$900 \mathrm{M} \mathrm{Hz}, 1$ Watt: Up to 9.6 km (6 miles)
$2.4 \mathrm{GHz}, 65 \mathrm{~mW}$: Up to 3.2 km (2 miles)
Minimum Separation Distance
$900 \mathrm{M} \mathrm{Hz}, 1$ Watt: 4.57 m (15 ft)
2.4 GHz, $65 \mathrm{~mW}: 0.3 \mathrm{~m}(1 \mathrm{ft})$

Radio Transmit Power

$900 \mathrm{M} \mathrm{Hz}, 1$ Watt: 30 dBm (1 W) conducted (up to 36 dBm EIRP)
$2.4 \mathrm{GHz}, 65 \mathrm{~mW}$: $18 \mathrm{dBm}(65 \mathrm{~mW})$ conducted, less than or equal to 20 dBm (100 mW) EIRP

900 MHz Compliance (1 Watt)

FCC ID UE3RM 1809: This device complies with FCC Part 15, Subpart C, 15.247 IC: 7044A-RM 1809
2.4 GHz Compliance

FCC ID UE300DX80-2400 - This device complies with FCC Part 15, Subpart C, 15.247

ETSI EN 300328 V1.8.1 (2012-06)
C: 7044A-DX8024

Antenna Connection

Ext. Reverse Polarity SMA, 50 Ohms
Max Tightening Torque: $0.45 \mathrm{~N} \cdot \mathrm{~m}$ (4 lbf•in)

Supply Voltage

10 V dc to 30 V dc or 3.6 V dc to 5.5 V dc low power option (Outside the USA:
12 V dc to $24 \mathrm{~V} \mathrm{dc}, \pm 10 \%$ or 3.6 V dc to 5.5 V dc low power option) ${ }^{2}$
900 M Hz Consumption: M aximum current draw is $<40 \mathrm{~mA}$ and typical current draw is $<30 \mathrm{~mA}$ at 24 V dc. (2.4 GHz consumption is less.)
Housing
Polycarbonate housing and rotary dial cover; polyester labels; EDPM rubber cover gasket; nitrile rubber, non-sulphur cured button covers
Weight: 0.26 kg (0.57 lbs)
Mounting: \#10 or M 5 (SS M 5 hardware included)
Max. Tightening Torque: $0.56 \mathrm{~N} \cdot \mathrm{~m}$ (5 lbf•in)

Interface

Indicators: Two bi-color LEDs
Buttons: Two
Display: Six character LCD

Wiring Access

DX80 models: Four PG-7, One 1/2-inch NPT, One 5-pin threaded M 12/Euro-
style male quick disconnect
DX80...C models: External terminals
Link Timeout
Gateway: Configurable via User Configuration Tool (UCT) software Node: Defined by Gateway

[^0]
Spread Spectrum Technology

FHSS (Frequency Hopping Spread Spectrum)

Discrete Inputs

Rating: 3 mA max current at 30 V dc
Sample Rate: 62.5 milliseconds
Report Rate: On change of state
ON Condition (NPN): Less than 0.7 V
OFF Condition (NPN): Greater than 2 V or open
Operating Conditions ${ }^{3}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.+185^{\circ} \mathrm{F}\right)$ (Electronics); $-20^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $+176{ }^{\circ}$ F) (LCD)
95% maximum relative humidity (non-condensing)
Radiated Immunity: 10 V/m (EN 61000-4-3)
Environmental Ratings ${ }^{4}$
DX80 models: IEC IP67; NEM A 6
"C" Housing M odels/External wiring terminals: IEC IP20; NEM A 1

Shock and Vibration

EC 68-2-6 and IEC 68-2-27
Shock: $30 \mathrm{~g}, 11$ millisecond half sine wave, 18 shocks
Vibration: $0.5 \mathrm{~mm} \mathrm{p}-\mathrm{p}, 10$ to 60 Hz

Discrete Outputs

Update Rate: Up to 62.5 milliseconds
ON Condition (NMOS): Less than 0.7 V
OFF Condition (NM OS): Open
Output State Following Timeout: OFF
Discrete Output Rating ($\mathbf{1 2}$ I/O NMOS)
Less than 100 mA max current at 30 V dc
ON-State Saturation: Less than 0.7 V at 20 mA

Certifications

Certifications for DX8x...C (External Wiring Terminal) and DX8x...E Models

Refer to the Class I Division 2/Zone 2 control drawings ($\mathrm{p} / \mathrm{n} 143086$) for wiring specifications or limitations. All battery-powered devices must only use the lithium battery manufactured by Xeno, model XL-205F.

Warnings

Install and properly ground a qualified surge suppressor when installing a remote antenna system. Remote antenna configurations installed without surge suppressors invalidate the manufacturer's warranty. Keep the ground wire as short as possible and make all ground connections to a single-point ground system to ensure no ground loops are created. No surge manufacturer's warranty. Keep the ground wire as short as possible and make all ground connections to a single-point ground system to ensure no ground lo
suppressor can absorb all lightning strikes; do not touch the Sure Cross ${ }^{\circledR}$ device or any equipment connected to the Sure Cross device during a thunderstorm.

Exporting Sure Cross ${ }^{\circledR}$ Radios. It is our intent to fully comply with all national and regional regulations regarding radio frequency emissions. Customers who want to re-export this product to a country other than that to which it was sold must ensure the device is approved in the destination country. A list of approved countries appears in the Radio Certifications section of the product manual. The Sure Cross wireless products were certified for use in these countries using the antenna that ships with the product. When using other antennas, verify you are not exceeding the transmit power levels allowed by local governing agencies. Consult with Banner Engineering Corp. if the destination country is not on this list.

Banner Engineering Corp. Limited Warranty

Banner Engineering Corp. warrants its products to be free from defects in material and workmanship for one year following the date of shipment. Banner Engineering Corp. will repair or replace, free of charge, any product of its manufacture which, at the time it is returned to the factory, is found to have been defective during the warranty period. This warranty does not cove damage or liability for misuse, abuse, or the improper application or installation of the Banner product.
THIS LIMITED WARRANTY IS EXCLUSIVE AND IN LIEU OF ALL OTHER WARRANTIES WHETHER EXPRESS OR IM PLIED (INCLUDING, WITHOUT LIM ITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE), AND WHETHER ARISING UNDER COURSE OF PERFORMANCE, COURSE OF DEALING OR TRADE USAGE.
This Warranty is exclusive and limited to repair or, at the discretion of Banner Engineering Corp., replacement. IN NO EVENT SHALL BANNER ENGINEERING CORP. BE LIABLE TO BUYER OR ANY OTHER PERSON OR ENTITY FOR ANY EXTRA COSTS, EXPENSES, LOSSES, LOSS OF PROFITS, OR ANY INCIDENTAL, CONSEQUENTIAL OR SPECIAL DAMAGES RESULTING FROM ANY PRODUCT DEFECT OR FROM THE USE OR INABILITY TO USE THE PRODUCT, WHETHER ARISING IN CONTRACT OR WARRANTY, STATUTE, TORT, STRICT LIABILITY, NEGLIGENCE, OR OTHERWISE.

Banner Engineering Corp. reserves the right to change, modify or improve the design of the product without assuming any obligations or liabilities relating to any product previously manufactured by Banner Engineering Corp. Any misuse, abuse, or improper application or installation of this product or use of the product for personal protection applications when the product is identified as not intended for such purposes will void the product warranty. Any modifications to this product without prior express approval by Banner Engineering Corp will void the product warranties. All specifications published in this document are subject to change; Banner reserves the right to modify product specifications or update documentation at any time. Specifications and product information in English supersede that which is provided in any other language. For the most recent version of any documentation, refer to: www.bannerengineering.com.

[^1]

[^0]: 1 Radio range is with the 2 dB antenna that ships with the product. High-gain antennas are available, but the range depends on the environment and line of sight. Always verify your wireless network's range by performing a Site Survey.
 2 For European applications, power this device from a Limited Power Source as defined in EN 60950-1.

[^1]: 3 Operating the devices at the maximum operating conditions for extended periods can shorten the life of the device.
 4 Refer to the Sure Cross ${ }^{\circledR}$ Wireless I/O Networks Instruction M anual ($\mathrm{p} / \mathrm{n} 132607$) for installation and waterproofing instructions.

